Lema de Euclides
Mira otros diccionarios:
Lema de Euclides — Portada Los elementos de Euclides, publicada en 1570 por Sir Henry Billingsley. El lema de Euclides (del griego λῆμμα) es una generalización de la proposición 30 del libro VII de Elementos de Euclides. El lema … Wikipedia Español
Lema (matemáticas) — En matemáticas, un lema es una proposición demostrada, utilizada para establecer un teorema menor o una premisa auxiliar que forma parte de un teorema más general. El término proviene del griego λήμμα, que significa cualquier cosa que es recibida … Wikipedia Español
Teorema de Euclides (desambiguación) — Diversos teoremas matemáticos deben su nombre al matemático griego Euclides: El lema de Euclides, sobre la divisibilidad por números primos. El teorema de Euclides, sobre la infinitud de los números primos. El teorema de la altura (también… … Wikipedia Español
Teorema de Euclides — Para otros usos de este término, véase Teorema de Euclides (desambiguación). El teorema de Euclides sobre la infinitud de los números primos es el siguiente: El conjunto formado por los números primos es infinito. Euclides ( 325 265 a.C) … Wikipedia Español
Teorema fundamental de la aritmética — En matemática, y particularmente en la teoría de números, el teorema fundamental de la Aritmética o teorema de factorización única afirma que todo entero positivo se puede representar de forma única como producto de factores primos. Por ejemplo,… … Wikipedia Español
Demostraciones del pequeño teorema de Fermat — Saltar a navegación, búsqueda En este artículo se recogen unas cuantas pruebas del pequeño teorema de Fermat, que establece: Si a es un número natural y p un número primo, entonces ap ≡ a (mod p). Este teorema es un caso especial del … Wikipedia Español
Número primo — Un número primo es un número natural mayor que 1, que tiene únicamente dos divisores distintos: él mismo y el 1. Se contraponen así a los números compuestos, que son aquellos que tienen algún divisor natural aparte de sí mismos y del 1. El número … Wikipedia Español
Disquisitiones arithmeticae — Saltar a navegación, búsqueda Página del título en la primera edición Disquisitiones Arithmeticae es un libro de teoría de números escrito por el matemático alemán Carl Friedrich Gauss en 1798 cuando tenía 21 a … Wikipedia Español
Teorema de la raíz racional — En álgebra, el teorema de la raíz racional (o la prueba de la raíz racional indica una restricción en las soluciones racionales (o raíces) de la ecuación polinómica con coeficientes enteros: Si a0 y an son diferentes de cero, entonces cada… … Wikipedia Español
Matemáticas — Euclides, matemático griego, del siglo III a. C., tal como fue imaginado por Rafael. Detalle de La Escuela de Atenas.[1] Las matemáticas o la matemática (del lat. mathematĭca, y este del … Wikipedia Español